

ADMs anisotropic correction factors and mixed clear scene types: a sensitivity study

Cédric Bertrand (RMIB)

CONCERN

X CERES-TRMM BB ADMs scene types:

- major advance over previous ADMs \Rightarrow ADM scene types

angular resolution

- no mixed-scene models

<u>Difficulty:</u> changes in the physical and optical properties of a scene have a strong influence on the anisotropy of the radiation at TOA

Question: ignoring modifications in the anisotropy of surface-leaving radiances leads to systematic error in the retrieved TOA reflected SW flux over footprints containing a mixture of scene types?

"GERB-LIKE" SW FLUXES

- RGP-SEVIRI processing but applied to MS-7 data
- Calibration:

cross-calibration: MS-7 visible channel/CERES SW channel

NB-to-BB Conversion

$$L_{SW} = D_0(\theta_s) + D_1(\theta_s) L_{VIS} + D_2(\theta_s) L_{VIS}^2 + D_3(\theta_s) L_{VIS}^3$$

• Radiance-to-flux conversion

$$F(\theta_s) = \frac{\pi L(\theta_s, \theta_v, \phi)}{R(\theta_s, \theta_v, \phi)}$$

⇒ CERES TRMM BB SW ADMs
⇒ Scene id.: MS-7 pixels registration according to the CERES-TRMM classes (invariant in time)

SW fluxes at TOA at the same temporal rate than MS-7 with a spatial resolution 3 times coarser

CERES-TRMM ADMs surface geotypes as seen by MS-7 imager

Bin-Averaged and Idealized SW radiances

- Clear sky footprints gathered by discrete bins of 10% in surface types coverageIdealized = simple linear interpolation
 - (B) OC-DV [02.24.03] (C) OC-BD [02.06.03] SW Radiance [W.m-2.sr-1] SW Radiance [W.m-2.sr SW Radiance [W.m.-sr 30 100 20 80 100 BV fraction [%] DV fraction [%] BD fraction [%] (D) OC-DD [02.27.03] (E) BD-DD [02.26.03] (F) BD-BV [02.15.03] SW Radiance [W.m-2.sr-1] SW Radiance [W.m.-zr-1] SW Radiance [W.m-2.sr-1] 93 100 90 80 0 20 40 60 80 100 0 20 60 100 20 40 60 80 100 DD fraction [%] DD fraction [%] DV fraction [%] (H) BV-DD [02.07.03] (I) DD-DV [02.03.03] (G) BV-DV [02.20.03] SW Radiance [W.m-2.sr-1] SW Radiance [W.m-2.sr-1] SW Radiance [W.m -2 -1] 85 75 70 80 100 80 20 100 80 20 100 DV fraction [%] DD fraction [%] DV fraction [%]

CERES-TRMM clear SW BB ADMs anisotropic

STORY AND LIBERTY

correction factors

Largest surface anisotropy variations occur along the coastline of continents (H) and (I): variations in R due to angular change in the footprints acquisitions angles are larger than the anisotropy difference between the 2 scene types in presence

Retrieved instantaneous SW fluxes at TOA

Flux discontinuity at the shifting point between the 2 ADMs scene types

Mixed scene types correction factors formulation

Considering a mixture of 2 components, the BB SW radiance, L, can be write as being:

$$L^{\text{\tiny MIX}} = f_1 L_1 + f_2 L_2$$

which converterd in term of flux gives:

$$|F^{MIX}=f_{1}F_{1}+f_{2}F_{2}|$$

$$R^{MIX} = \pi \frac{f_{1}L_{1} + f_{2}L_{2}}{f_{1}F_{1} + f_{2}F_{2}} = \frac{f_{1}R_{1} + f_{2}R_{2} \cdot (F_{2}/F_{1})}{f_{1} + f_{2}(F_{2}/F_{1})}$$

Problem:

 $\overline{F}_{1}/\overline{F}_{1}=\overline{UNKNOWN}$

Approximating the unknown ratio by the ratio of:

- the corresponding CERES-TRMM BB SW ADMs climatological SW fluxes (or equivalently to the ADMs TOA albedos)

$$R^{MIX} = \frac{f_1 R_1 A_1 + f_2 R_2 A_2}{f_1 A_1 + f_2 A_2}$$

- the neighboring fluxes

Neighboring flux ratio approach

We assume that F_1 and F_2 are similar to the SW fluxes F_1 and $\tilde{\mathbf{F}}$ retrieved over the geographically closest footprint of pure CERES-TRMM scene of type 1 and 2, respectively.

Mixed scene types anisotropic factors

Smoother transition between 2 ADMs scene types

<u>Idealized</u>: F_2/F_1 ratios are known and while A_2/A_1 can differ of about 2% (OC-BV) to about 31% (BD-BV) from the corresponding F_2/F_1 , $\Delta R_{\text{MAX}}^{\text{MIX}}$ is less than 1.9 % (OC-BD)

<u>Bin-averaged</u>: $\Delta R_{\text{MAX}}^{\text{max}} = \text{larger} \rightarrow \text{possible intra/inter-bin(s)}$ heterogeneity in the vege cover

Bin-averaged F_2/F_1 vs. A_2/A_1 ratios

 \tilde{F}_2/\tilde{F}_1 Not necessarily constant throughout all our discrete coverage bins

 A_2/A_1 Invariant (in the absence of coverage bins dependent angular variations in the footprints acquisition geometry)

Gap between the 2 ratio time series -> climatological vs. time dependant values

Retrieved Instantaneous SW Fluxes at TOA

Idealized: magnitude of ΔF between the 2 approaches are negligible (ΔF 0.006 to 1.9 %) Bin-averaged: ΔF is a function of both: - difference between F_2/\tilde{F}_1 and F_2/\tilde{F}_2 and F_2/\tilde{F}_1 and F_2/\tilde{F}_2

Conclusions (I)

- Do not account for modifications in factors affecting the anisotropy of surface-leaving radiances in case of footprints containing a mixture of scene types cause TOA flux errors:
 - Flux discontinuity when shifting from one CERES-TRMM scene types to another.
 - Magnitude of the flux difference depends on the surface anisotropy difference between the 2 scene types in presence

Largest fluxes discontinuities occur in coastal zone OC-BV: 32% vs. BV-DD: 0.8%

Conclusions (II)

• In the absence of available ADMs for mixed-scene types: possible to combine the existing CERES-TRMM BB SW ADMs to derive reliable mixed CERES-TRMM scene types anisotropic factors:

🔆 ADMs flux approximation approach

The score of the method has a temporal component and depends on:

- the magnitude of the differences existing between the physical and optical properties of each surface within the footprint and the associated CERES_TRMM scene types
- the magnitude of the anisotropy difference between the scene types in presence.

<u>Idealized cases</u>: maximum fluxes differences range from 0.01 to 1.75 % <u>Bin-averaged cases</u>: larger but negligible in regards to the ones introduced without R^{MIX}

Neighboring flux approach

Requires additional computing time Benefit depending on the cloud cover

Clear sky averaged acquisition angles + Idealized ΔR and ΔF

Mixed surface types	Os (degree)	θv (degree)	♦ (degree)	ΔR (r.e. %)	ΔF (r.e. %)
OC-BV	66.70	61.14	175.21	0.54 (50.09%)	39.84 (32.41%)
OC-DV	23.87	14.36	168.95	0.32 (40.30%)	43.12 (27.45%)
OC-BD	42.84	30.69	173.97	0.35 (47.45%)	81.26 (30.47%)
OC-DD	44.89	49.82	165.26	0.38 (40.08%)	47.49 (27.26%)
BD-DD	48.62	55.65	165.54	0.19 (16.16%)	35.06 (14.12%)
BD-BV	29.53	18.68	167.99	0.03 (03.16%)	10.34 (03.44%)
BV-DV	21.22	16.44	142.59	0.02 (01.72%)	05.19 (02.24%)
BV-DD	08.51	30.39	166.71	0.01 (01.22%)	01.75 (00.80%)
DD-DV	43.00	52.00	154.00	0.02 (01.26%)	03.35 (01.78%)

Idealised fluxes ratios

	F_2/F_1	A_2/A_1	$\Delta R_{ ext{max}}$	$\Delta F_{\scriptscriptstyle ext{max}}$
OC-BV	1.42	1.39 (2.05 %)	2.8E-03 (0.21 %)	0.19 (0.21 %)
OC-DV	1.84	1.97 (6.79 %)	5.3E-03 (0.55 %)	0.63 (0.53 %)
OC-BD	2.93	3.56 (21.57 %)	1.7E-02 (1.87 %)	2.81 (1.75 %)
OC-DD	2.64	2.23 (15.59 %)	1.6E-02 (1.41 %)	1.63 (1.38 %)
BD-DD	0.72	0.64 (15.88 %)	8.2E-03 (0.64 %)	1.48 (0.65 %)
BD-BV	0.80	0.55 (31.12 %)	3.1E-03 (0.29 %)	0.84 (0.29 %)
BV-DV	0.74	0.87 (16.89 %)	7.3E-04 (0.07 %)	0.15 (0.07 %)
BV-DD	1.21	1.15 (4.72 %)	1.6E-04 (0.01 %)	0.03 (0.01 %)
DD-DV	0.75	0.77 (2.03 %)	8.0E-05 (6E-3 %)	0.01 (6E-3 %)

CERES-TRMM SW ADMs TOA Albedo

Variation of $\pm 25 \%$

